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The shape of a titration curve contains useful information, which 
may be extracted in terms of orthogonal polynomial coefficients. In 
this way, it is possible to (i) distinguish a monobasic acid from a 
polybasic acid, having groups of closely similar strength ; (ii) detect 
acid-base impurities in acids and bases, and (iii) study medium effects. 
The choice of polynomial, range, number of points and experimental 
conditions are discussed. Using twelve point polynomials and 
equipment of modest performance, the PI coefficient (for the central 
half of a monobasic acid titration curve) can be measured with a rela- 
tive standard deviation of 0.58. 

Instrumental methods have led to a substantial increase in the quantity of numericai 
data, which may be ascertained for a given sample. Whereas a pair of numbers 
(e.g. the volume of acid required to neutralize a given volume of sample) emerges 
from each gravimetric or volumetric assay, a mathematical function (e.g. a graph of 
pH against volume) may emerge from an instrumental method, like potentiometric 
titration. Furthermore, when extracting a maximum of chemical information, a 
function necessarily requires more complicated arithmetic than does a pair of numbers. 
Hence, when dealing with a function, the use of simple arithmetic, entirely adequate 
to gravimetric or volumetric results, will normally lead to much loss of information. 
Such a loss is bound to occur, in fact, if the analyst selects a maximum or minimum 
value from an instrumental curve and ignores all other values, when calculating the 
result. This loss is wholly concerned with the shape of the function and so certain 
principles of curve fitting (Draper & Smith, 1966) are bound to play an important 
role in any attempt to increase the yield of information. Nevertheless, we must 
emphasize that, despite the use of curve fitting arithmetic, the present work is not 
concerned with curve fitting in the usual sense. 

PRINCIPLES O F  C U R V E  FITTING 

(a) Summation of curves 

summing the three functions in Fig. 1 b. 
write : 

In Fig. la, f(v) is a function of the abscissa variable, v, and is reproduced by 
Thus, for a given abscissa value, Vk, we can 

. .  . .  (1) f(vk) = Ao(Vk) + Ai(Vk) + Az(Vk) . .  

This means that the value, f(Vk), in Fig. l a  is obtained by taking a sum of the 
values (AO(Vk), A1(vk) and A2(vk)), read from the three curves in Fig. l b  (all these 
ordinate values referring to the same abscissa value, Vk). By repeating this process 
at many points on the abscissa, we could construct the entire curve, f(v), by summing 
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FIG. 1. Sunimation of component curves. 

the three curves (A,(v), A,(v) and A,(v)) in Fig. 1 b. 
equation (1) becomes 

where A,(v), A,(v) and A,(v) are mathematical components of the function, f(v), and 
equation (2) is a mathematical model thereof. 

These mathematical components evidently determine the shape of the curve f(v). 
Thus, if A,(v) were absent, f(v) would become a straight line. In a similar way, the 
overall slope of f(v) depends upon the component, A,(v). Moreover, we can claim 
to have fitted the curve, f(v), as soon as its mathematical components have been 
calculated by the method detailed below and tested for statistical significance, where 
necessary. 

(b) Standard mathematical components 

The above exercise would be trivial if the mathematical components were arbitrary 
and so curve fitting always proceeds on a basis of particular mathematical functions, 
which in the present context, may be regarded as no more than a set of standard 
shapes. For most experimental purposes, orthogonal polynomials (Fig. 2) afford the 
most useful set (Milne, 1949; Davies, 1958; Buckingham, 1962). 

The curves in Fig. 2 were constructed from tables of orthogonal polynomials 
(Fisher & Yates, 1957). These give ordinate values of the polynomial at a specified 

Hence, in more general terms, 

f(v) = Adv) + Ai(v) + Aa(v) . .  . .  . * (2) 
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FIG. 2. Orthogonal polynomials. In each diagram, Pj(v) is plotted against a set of equally spaced 
abscissa values, vo, vl, v2, . . . . Vn, the same set being used in all six diagrams. Each set of points 
represents a fundamental curve shape, whose general characteristics are indicated by the line 
which joins them. 

number of points, equally spaced on a generalized abscissa scale (“v” in this paper); 
for example, one such table gives Pl(v) for 12 equally spaced values of v. For any 
given polynomial, the number of points varies from table to table and, in the present 
case, Fig. 2 was constructed from “15 point polynomials”. 

We can now reveal that the three curves in Fig. l b  were obtained by using 
coefficients (po, p1 and pz) to adjust the scale of the curves, P,,(v), Pl(v) and Pz(v), in 
Fig. 2. Thus, 

so that 
AOW = POPO(V), Al(4 = PlPl(V) and AzW = PzPz(V) 

f(v) = POPO(V) + PlPl(V) + PzPz(V) . . . .  . . (3) 

The shape of f(v) is thus determined by the magnitudes of coefficients po, p1 and 
pz: if f(v) were more curved, pz would be greater, whilst if it possessed no overall 
slope, p1 would be zero. 

(c) Calculation of coeficients 

of polynomials, which are orthogonal. 
polynomials for the curve in Fig. la, it is only necessary to: 

Calculation of the mathematical components of f(v) is greatly simplified by the use 
Thus, to obtain coefficients of 12 point 

(i) note the ordinate values of f(v) at 12 equally spaced points on the abscissa (v). 
(ii) multiply each ordinate value by the appropriate integer in the Table of ortho- 

gonal polynomials (Fisher & Yates, 1957, see Table 1) (the first ordinate value times 
the first integer in the Table, the second ordinate value times the second integer in 
the Table, and so on). 

(iii) sum the products obtained in (ii) and then divide by the normalizing factor, 
given at the bottom of the Table (and in brackets in Table 1). 

Such a calculation is set out in Table 1, wherein the data (used to plot Fig. la) 
appears in the first two columns, 12 point polynomials in the next four columns and 
the necessary products in the last four columns. 

Each product is obtained by multiplying the value of f(v) in the same row by the 
appropriate value of the polynomial, also in the same row. For example, in the 
first row, the product, -40.15, is equal to 3.65 x (-11). 

In clarifying the arithmetic, Table 1 gives a false impression of the real arithmetical 
labour. An electric desk calculator, which is suitable for statistical work, sums the 
products automatically, whilst with a desk top computer, values of the orthogonal 
polynomials can often form part of the program, in which case, it is only necessary 
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for the operator to insert the correct program and enter the values of f(v) in numerical 
order. 

Table 1. Calculation of orthogonal polynomial coeficients. 

Data 

V f(v) 
0.25 3.65 
0.50 3.15 
0-75 2.71 
1.00 2.33 
1.25 2.01 
1-50 1.75 ~~ 

1.75 1.55 
200 1.41 
2.25 1.33 
2.50 1.31 
2.75 1.35 
3.00 1.45 

Orthogonal 

Po($ PdV) 
+ I  -11 
+ I  -9 
+1  -7 
+1 -5 
+ I  -3 
+1  -1 
+1 -k 1 
+ I  i- 3 
+1 + 5  
+ I  +7 
-t 1 +9  
+1  - t l l  
(12) (572) 

- Polynomials 

PAv) P3(v) 
c55 -33 
+25 +3 +3.15 
4-1 +21 +2.71 

-17 +25 +2.33 
-29 +19 
-35 +7 
-35 -7 
-29 -19 
-I7 -25 

+1 -21 
+25 -3 
+ 5 5  +33 

(12,012) (5148) 

-t2.01 
+1.75 + 1.55 + 1.41 + 1.33 + 1.31 + 1.35 + 1.45 

Products 

f(v)P,(v) f(v)P,(v) 
4 0 . 1  5 + 200.75 
-28'35 +78.75 
-18'97 +2.71 
-1 1.65 -39.61 
-6.03 -58.29 
-1.75 -61.25 
$1.55  -54.25 
+4'23 -40.89 
$6.65 -22.61 
+9*17 +1.31 

+12.15 +33.75 
+15.95 $79.75 

-- 
f(v)P3(v) 
-1 20.45 + 9.45 

+56.91 + 58.25 
+38.19 + 12.25 
-10.85 
-26.79 
-33'25 
-27.51 
-4.05 + 47.85 

Sums of products . . . .  .. . .  . . +24'00 -57.20 +120.12 0.00 
Orthogonal polynomial coefficients . . . .  . .  2.00 -0.10 f0.01 0.00 

From the coefficients at the bottom of Table 1, the curve in Fig. l a  evidently con- 
tains constant (Po), linear (PI) and quadratic (P2) components but no cubic (Pa) 
component. 

The values of f(v), used to plot the curve in Fig. l a  and provide data for Table 1, 
were deliberately chosen to obtain an exact fit from equation (3). Thus, on sub- 
stituting the above coefficients, equation (3) becomes 

for v = 0.25, 
[(2.00) X (+1)] + [(-0*10) x (-ll)] + [(+0*01) x (+55)] = 3.65 = f(0.25) - - 

for v = 0.50, 

for v = 0.75, 

[(2*00) x (+I)] + [(-@lo) x ( -9)] + [(+0.01) x (+25)] = 3.15 = f(0.50) 
e_ - - 

[(2*00) x (+1)] + [(-0*10) x ( -7)] + [(+0*01) x ( +I)] = 2.71 = f(0.75) - - - 
For each abscissa point, these expressions calculate the values of Ao(v), A,(v) and 

A2(v) in Fig. l b  and sum them to obtain the corresponding value of f(v) in Fig. la. 
Such an exact fit is most unlikely to occur in practice and, if f(v) were derived from 
experiment, observational errors would almost certainly lead to a non-zero value of 
p3. Hence, some coefficients are devoid of statistical significance (Davies, 1958). 

(d) Simplicity of calculation 

From the above example, it is evident that, if measurements are equally spaced 
on the abscissa scale, it is very easy to specify the shape of an experimental curve by 
calculating one or more orthogonal polynomial coefficients. In other words, it is 
very easy to extract most of the information, contained in an experimental function. 

D I G I T A L  F I L T E R I N G  

With increased availability of computers, the need to extract more information 
from instrumental techniques has been increasingly recognized (Fenwick, 1932; Gran, 
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1952; Feates & Ives, 1956; Sternberg, Stillo & others, 1960; Jones, Seshadri & others, 
1963; Katakis, 1965; Fraser & Suzuki, 1966; Wernimont, 1967; Westerberg, 1969; 
Anderson, Gibb & Littlewood, 1970). 

The present paper follows earlier work (Glenn, 1963; Glenn, 1967; Agwu & Glenn, 
1967) in using a technique, more recently known as digitaljltering (Blackburn, 1969) 
which is no more than a computer analogue of the communication engineer’s well 
known technique of electrical filtering. In digital filtering, electrical filters are 
replaced by the arithmetic of curve fitting, but, as we shall argue below, digital filters 
should not be restricted to the usual objectives of curve fitting, for in the hands of 
communications engineers, electrical filters have been used with greater imagination ! 

The aim of jltering, whether electrical or digital, is to reject some part of the 
experimental function and so obtain a more reliable and useful conclusion. A pertinent 
analogy would concern a communications engineer asked to measure the intensity of 
sound emitted by a whistle, when blown at  a busy traffic junction during the rush 
hour. In these circumstances, a huge positive error would emerge from a straight- 
forward measurement of the gross intensity of sound and so special apparatus would 
be essential. 

Fig. 3 shows the kind of apparatus, which would be suitable for a whistle, having 
a fundamental of 4KHz. The microphone and amplifier convert the total sound 
input to a measurable electrical signal, having a complicated waveform (A). This 
signal then passes through a 4KHz filter, when all frequencies which lie outside the 
passband of the filter are absorbed and only a small range of frequencies (B) are 
allowed to reach the A.C. meter. After suitable calibration, the latter would give 
a greatly improved estimate of the desired sound intensity. 

Microphone v 
Amplifier 

................... 
D @ (A) 

Filter 
( L  KHz) 

,‘TI, ................... 0 @ (6) 
A.C. meter 

FIG. 3. Isolation of a signal from a noisy background. 

The ability of the filter to reject unwanted sound is inversely related to the width 
of its passband; that is, assuming average conditions, wherein the unwanted sound 
is well distributed throughout the frequency range, &15 KHz (serious error might, 
however, result from a small boy with a similar whistle!). 

The characteristic sound of a whistle resides more in its harmonics than in its 
fundamental frequency. Hence, if the filtered signal were applied to a loudspeaker 
instead of the A.C. meter, a somewhat characterless note would emerge. Neverthe- 
less, the use of additional filters (at 8KHz, 12KHz and l6KHz) to measure the 
intensity of these harmonics (and so extract the full character of the whistle) would 
multiply the risk of interference from unwanted sound. In other words, additional 
filters would merely provide additional channels, through which the unwanted sound 

N 



186 S F. PERKS AND A. L. GLENN 

could affect the meter. 
kind of application. 

On average, it is unwise to use more than one channel in this 

The above example demonstrates two points : 

(1) For some purposes, an experimental function can be adequately represented 
by only one of its mathematical components. This applies to the above example, 
in which the whistle was adequately represented by its 4KHz component. It also 
applies to the present work, wherein the central half of a titration curve is represented 
by just one component, other statistically significant components being unnecessary. 

(2) For some purposes, it may be very unwise to represent an experimental function 
by more than one of its mathematical components. This applies to problems of 
background interference, as in the above example and also in spectrophotometric 
analysis (Wright, 1941 ; Glenn, 1963). Nevertheless, although relevant to the general 
problem of digital filtering, this point does not apply to the present analysis of titration 
curves, wherein the use of one component is a matter of convenience rather than 
necessity. 

These two points justify an earlier statement, namely that, despite the use of curve 
fitting arithmetic, the present work is not concerned with curvejitting in the usual sense. 

Curve fitting is usually concerned with faithful models of experimental functions 
and is mainly directed towards the elimination of observational error. Such an 
approach is equivalent to a communications engineer’s use of a low pass filter to 
remove high frequency electrical noise, which often represents a high proportion of 
the total error of observation. Nevertheless, electrical filters can be used in other 
ways (p. 185s) and the same is also true of digital filters (or curve fitting arithmetic). 

As in earlier work, this paper is concerned with useful working models of experi- 
mental functions and, in deriving such models, a number of statistically significant 
mathematical components are usually omitted. In consequence, one of our working 
models may differ very greatly from the corresponding faithful model, but this may 
be turned to advantage in some cases (p. 185s) and may constitute no material dis- 
advantage in others. 

In spectrophotometric analysis, the well known “base-line’’ method (Mulder, 
Spruit & Keuning, 1963) is an apt example of digital filtering, even as a purelygraphical 
operation. It extracts the quadratic (P2) component and rejects the constant (Po) and 
linear (PI) components of the absorption curve. For assay purposes, the quadratic 
component is a good working model of the compound’s absorption curve. 

Information obtainable from the shape of a titration curve 

It is common practice to ignore the shape of a titration curve and confine attention 
to one or two abscissa points, such as the equivalence point and pH at half neutralisa- 
tion, in the case of a monobasic acid. Although the shapes of small segments of a 
titration curve are important to the evaluation of equivalence points by derivative 
methods, the latter can hardly be said to evaluate shape in the present context. 

By evaluating the shape of a titration curve, or a substantial segment thereof, we 
take account of more data than hitherto and, therefore expect an improvement, 
either in the quality or quantity of information produced. This is certainly true of a 
derivative method, which takes account of an appreciable segment of the curve 
(Fenwick, 1932). Moreover, in the authors’ experience, the accuracy of a poorly 
defined equivalence point is greatly improved when the derivative is obtained by a 
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convolution process (Savitzky & Golay, 1964), which spans a reasonably large seg- 
ment of the curve. 

The scope of potentiometric titration is currently limited by the fact that even 
Savitzky & Golay’s approach has difficulty in detecting an equivalence point between 
two stages of neutralization, which are associated with a difference of less than 2 units 
in pK,. Nevertheless, from results obtained in the present work, evaluation of 
orthogonal polynomial coefficients would seem to offer good prospects for tackling 
this kind of difficulty in cases where the two stages can be separately characterized. 
Thus, even in the case of a mixture of two monobasic acids, which differ by as little 
as 0.5 unit in pKa, the P, coefficient is still fairly sensitive to the composition of the 
mixture. 

By evaluating p1 for a substantial segment, it is relatively easy to distinguish 
between the curve of a monobasic acid and a curve which relates to a mixture of 
monobasic acids or to the overlapping stages of a polybasic acid. Such an approach 
may, therefore, be useful to investigations of molecular structure, where knowledge 
of the number of individual acid-base groups in a molecule is not only valuable in 
its own right, but is also essential to the calculation of a molecular weight from a 
titration curve. The same approach may also prove useful to the quality control of 
acid-base solutions, particularly in view of results obtained in the present work. 

For quantifying solvent effects, acid-base interactions and association (King, 1965), 
there is much to be said for the use of orthogonal polynomial coefficients, based upon 
a substantial segment of the curve. In this respect, an accurate potentiometric 
titration constitutes a rapid method for detecting and quantifying the non-ideal 
behaviour of an acid-base system (see p. 192s). 

When using a given polynomial (e.g. P,) to quantify such effects, 

p,(effect) = p,(observed) - p,(theoretical) 

where pl(effect) is a measure of non-ideal behaviour and p,(theoretical) is obtained 
by substituting species concentrations into the appropriate acid-base equation (Ricci, 
1952) and then calculating pl, as in Table 2. 

The present paper is concerned with an initial study of the potentialities of 
orthogonal polynomials in evaluating titration curves. To this end, it is essential, 

Table 2. Theoretical values of p 1  x lo5 for monobasic acids. 
[0.25-0.75 neutralization; 12 point polynomial (n = 1 l)] 

PKa 1.0 molar 0.1 molar 
1 (or 13) 3222.6 23 16.6 
2 (or 12j 4010.7 3222.6 
3 (or 11) 4 190.2 4010.7 
4 (or 10) 4211.2 4190.2 
5 (or 9) 421 3-4 421 1.2 
6 (or 8) 421 3.6 42 1 3.4 
7 421 3.8 4213.8 

Values of p1 x lo5 in Table 2 were based on pH’s calculated from the following expression: 
c(l - x) - y W+I = Ka (7- ) where x is the fraction of neutralization, 

and c, the stoichiometric molarity of acid. 
-[OH-]. For pKa = 7, y = 0. 

For pKa < 6, y = [H+] and for pKa B 8, y = 

Deviation of the pKa from 7 and reduction of concentration both produce a decrease in the 
magnitude of pl. 
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not only to choose a suitable function, range of application and number of points, 
but also, to estimate the order of accuracy with which chosen coefficients can be 
measured by normal chemical procedures. 

PH 

- 
I 

C 

E 

0.25 0.5 0.75 
V 

3.2 

dpH) 

3 -1 

FIG. 4. 
fractions of neutralization. 

Monobasic acid titration curve: standard deviation of pH measurement at different 
= s(pH). 

Choice of function and range 

The typical weak monobasic acid curve of Fig. 4 provides a useful basis for the 
choice of function and range. Bearing in mind the principles outlined on p. 182S, 
the entire curve, A-E, can be seen to originate mainly from the mathematical com- 
ponents, Po(v), Pl(v) and P3(v). Moreover, in view of the relation between the shape 
of a monobasic acid curve and the pK of the acid, it is evident that coefficients, po 
and p3, are highly dependent upon pK, po bearing a substantially linear relationship 
thereto, whilst p3 is a more or less linear function of IpK - pH(neutra1ity)l . Apart 
from such high dependence upon pK, there is an added disadvantage that the poorly 
buffered regions, AB and DE, must inevitably provide major contributions to the 
error of the calculated coefficients. Similar objections apply to regions, AB, AC, 
CE and DE, but not to the region, BD, which therefore represents a good choice for 
most purposes. The further decision to assign B to 25 % and D to 75 % neutralization 
throughout the present work reflects a desire for the safety of a well buffered region. 

Between 25 and 7 5  % neutralization, po and p1 are the only significant coefficients. 
Moreover, the usefulness of po in the study of solvent effects is underlined by the fact 
that 4p0 = 4pK for small values of 4pK. 

The number of points 

This part of the discussion refers to a general form of equation (3), namely, 

f(v) = POPO(V) + PlP,(V) + peP,(v) + ... + pnPn(v) . . ‘ . (4) 

Perfect representation of a continuous experimental function, such as a titration curve, 
may demand an infinite number of terms in equation (4), in which case, one would 
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need to measure f(v) at infinitesimal intervals of v. In practice, however, one can 
never do more than sample the continuous function at  a discrete set of abscissa values. 
Thus, in view of restrictions, such as the limits of reading a chart or the inevitable 
truncation of a digital output, all experimental variables are granular. 

The effect of taking too small a sample is evident from the simple example in 
Fig. 5, wherein two different continuous functions, f,(v) and f,(v) give identical 
values of a given coefficient for the set, (v = 1, 3, 5),  but two different values of the 
same coefficient for the set, (v = 1, 2, 3, 4, 5). In other words, f,(v) and f,(v) are 
indistinguishable when sampled at v = 1, 3 and 5, this phenomenon being known as 
"aliasing" (Blackburn, 1969). 

FIG. 5 .  

Sudden fluctuations in f(v), arising from features such as a spike, hump (or step 
in the case of a titration curve), contribute to the coefficients of higher terms in 
equation (4). Moreover, the number of terms in (4) is limited to the number of 
points, (n + 1) and so n must always exceed the order of the highest term, which is 
statistically significant (n should, in fact, exceed this lower limit by a comfortable 
margin, in view of the tendency for observational errors to move from lower to higher 
terms as n increases). Hence, in determining the coefficients of lower polynomials, 
an adequate number of points is often a good deal larger than the bare minimum 
required to calculate the coefficient in question (e.g. 2 points for p,). 

In comparing coefficients obtained from equivalent segments of different titration 
curves, it is essential to adhere to a constant number of points. The latter must, 
therefore, be chosen in the light of that curve which contains the largest fluctuation 
in f(v) within the segment analysed. 

An increase in the number of points also affects the reproducibility of the observed 
coefficients and in view of special circumstances, may be shown to reduce the relative 
standard deviation of the PI coefficient, used throughout the present work. 

Substituting pH for f(v) and using s(x) to denote the e'stimated standard deviation 
of quantity, x, s(p,) is approximately equal (Davies, 1958) to s(pH)/N$, where N, 
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is the normalizing factor for Pl(v); that is, 572 for 12 points. s(pH) refers to the 
observational error of pH measurement, which to validate the expression for s(pl), 
must be homogeneous over the set of points used to calculate pl. Nevertheless, apart 
from small regions at the start and finish of a monobasic acid titration curve, there 
should be no difficulty in achieving reasonable homogeneity of s(pH), which can only 
depend upon errors in the measurement of pH and v respectively. Of these two 
contributions, the one due to pH measurement should be constant for measurements 
in aqueous solvents which avoid extremes of pH, whilst that due to v should also be 
constant if the curve undergoes no great variation in slope over the segment analysed. 
From the results in Fig. 4, the anticipated good homogeneity of s(pH) was evidently 
achieved over most of the curve for acetic acid, s(pH) at the equivalence point being 
the sole exception. 

The present work involved analysis of an approximately linear segment of titration 
curve, spanning about 1 pH, and in these circumstances, 

r. s.( P, 1 

1.0 

0.5 

100 s(pH) Nf 1-n 

i = O  
p1 (i/n)Pl(vi)/Nl SO that r.s.(pl) m i = n  .. . . (5) 

2 (i/n)Pl(vi) 

0 .  

0 

0 

* 

- 

i = O  

where i = 0, 1, 2, . . . . n and r.s. denotes relative standard deviation (or coefficient of 
variation, which term might confuse the reader in present circumstances). 

Theoretical values of r.s.(pl), obtained by substituting the convenient value, 
s(pH) = 0.01, into the last formula, are shown in Fig. 6 .  There is evidently a useful 
reduction in r.s.(pl) to be gained by increasing n, over and above the bare minimum, 
n = 1. 

Instrumentation and technique 

The preliminary investigation now reported was carried through with a pH meter 
of modest performance and with no more than the usual technique for producing 
titration curves, accurate by present day standards. In consequence, it was only by 
extensive replication that the smaller differences between mean coefficients in Table 3 
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achieved significance. Improved instrumentation and technique on the other hand 
might well have reduced the number of replicates required to discriminate a given 
difference. 

The accuracy and precision of coefficients depends not only upon operator technique 
but also upon maintenance of a linear pH/e.m.f. relationship of constant slope. 
Furthermore, although electrode standardization must remain constant throughout 
the measurement of a given coefficient, its accuracy is unimportant to the deter- 
mination of any coefficient other than p,,. With a slide wire linearity of 0.01 % and 
ability to discriminate rt0.0005 pH, a modern pH meter will achieve these require- 
ments to within f0.0005 pH over a range of 1 pH unit, particularly when equipped 
with a single helical potentiometer which eliminates switch contact potentials from 
the slide wire system. In these circumstances, attainment of the desired pH/e.m.f. 
characteristics is effectively determined by the electrode system. 

Under the dynamic conditions of an ordinary potentiometric titration, deficiencies 
of the electrode system mainly arise from hysteresis (Beck, Caudle & others, 1963) 
of the glass electrode and from the temperature coefficients of both electrodes. Some 
glass electrodes require a long time to reach the pH of the surrounding solution and 
in a titration of reasonable duration, the observed pH may lag behind the true value 
by as much as 0.05 pH. Moreover, the isothermal condition so necessary to 
meaningful pH measurement is destroyed by the heat of neutralization, which can 
raise the temperature by 1" in the course of titration, so affecting the pH/e.m.f. 
relationship as well as the potentials of reference electrode and inner half-cell of the 
glass electrode. The slope of the pH/e.m.f. relationship also depends upon other 
factors such as the electromotive efficiency (British Standards, 1965) of the glass 
electrode and the efficiency of the guard ring (Parker, 1950) both of which may 
fluctuate from day to day. 

The last factors can be remedied by calibration, which for the limited purpose of 
quality control may also reduce the adverse effects of glass electrode hysteresis and 
thermal shifts. For this purpose, bracketing a given titration by titrations of a pure 
reference acid would seem to offer a powerful though laborious calibration procedure. 
For other purposes however, such as the study of solvent effects, it would seem 
advisable to (i) allow adequate time for electrode equilibration; (ii) stabilize both 
temperature and ionic strength and (iii) control factors such as electromotive efficiency 
by calibration with two buffers. 

Using a free piston burette, titrant volume can be controlled to a limit (e.g. 0.01 ml 
in 20 ml) equivalent to about 0.0005 pH over the range of neutralization employed 
in the present work. Titrant volumes can be made integral by taking a suitable 
weight of titrand, based on a prior titration to complete neutralization. Coulometric 
generation of titrant would however be more attractive in view of the possibility of 
automating the process in conjunction with a pH meter giving a digital print out. 

Experimental procedures 

Organic acids were lab. grade, except for acetic acid (Analytical Reagent). In all 
titrations, 0 . 5 ~  NaOH aq., contained in a Jencon free piston burette, was added to 
40 milliequivalents of acid in 100 ml of water. Titrant volumes necessary to produce 
12 readings, equally spaced on the abscissa scale, between 0.25 and 0.75 of total 
neutralization, were calculated from a prior titration. pHs were measured on a 
Cambridge Bench Type pH meter (discrimination : approximately 0.01 pH) using 
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glass (General Purpose) (British Standard, 1965) and saturated calomel electrodes, 
the temperature compensator being set to lab. temperature (19.6 i 2"). Each 
titration was completed in about 30 min during which time the reading on ~ / 2 0  
potassium hydrogen phthalate drifted by less than 0.02 pH, usually toward higher 
values. The electromotive efficiency of the glass electrode, checked with phthalate 
and borate buffers at 2 hourly intervals, was never less than 0.996. 

Discussion of results 

In Table 3, each block (except c) refers to a set of replicate titrations of a given 
sample of acid, carried through in the course of two or three days. Trends between 
blocks were probably reduced, but not eliminated, by the use of the same glass 
electrode throughout all blocks. In block c, two samples of propionic acid were 
titrated alternately, in order to minimize the effect of trends. 

Table 3. Titration of mono- and di-carboxylic acids: mean values of orthogonul 
polynomial coejicients (0.25-0-75 neutralization; n = 1 1) and relative 
standard deviations thereof. 

Block 
a 

b 

c 

d 

e 

f 

,? 

Acid 
Acetic . . . .  .. 

Propionic . .  . .  

Fraction V 

Acetic Equimolar 
Propionic } proportions 
Oxalic . . . .  . .  

Malonic . .  . .  

Succinic . .  . .  

Mean value of coeficient x lo5, 
relative standard deviation, 

degrees of freedom 

P1 
421 9, 0.59 %, 9 

4136, 0.61 %, 9 
(0.00 %) 

(-1.97 %) 
4125, 0.59%, 9 
(-2.23 %) 
4084, 0.83 %, 9 
(-3.20 %) 
4162, 1*46%, 8 
(- 1.35 %) 
1 1  090, 0.49 %, 9 
(+ 163 'A 
12 700,0.44 %, 9 
( i- 201 %) 
5874, 0.39 %, 7 
(+39.2%) 

P3 
- 

- 

- 

- 

- 

-399, 0.92 %, 9 

-502, 1.30%, 9 

19, 21 %, 7 

The relative standard deviations given in Table 3 for all blocks, other than d, relate 
to variances, which, according to Bartlett's test, form a homogeneous set whose mean 
corresponds with s(pl) = 24.3 x This value is approximately equivalent 
(p. 189s) to s(pH) = 0.0058, which is consistent with the equipment and technique 
employed. 

To assist comparison, the percentage deviation from the mean value of p1 for block 
a is given beneath each mean value of p1 in Table 3. Small statistically significant 
differences between means should be regarded with caution in view of possible trends 
between blocks. The difference between means (t = 10.1) for block a and Fraction 
V of block c probably reflects the tendency, in aqueous solution, for acetic acid to 
dimerize to a smaller extent than propionic acid. Thus, whereas acetic acid gave 
reasonable agreement between observed and theoretical values (Table 2), propionic 
acid showed a greater divergence on account of its larger association constant (Nash & 
Monk, 1957). 
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Differences between the means for blocks a, b and d are relevant to the distinction 
of mono- from polybasic acids, the pKa difference between acetic and propionic acids 
being less than the theoretical minimum (0.3) for the difference in pK, between 
consecutive stages of a polybasic acid. The statistical significance ( t  = 2 . 6 3 , 4  = 10) 
for the small difference between mean values of p1 for blocks a and d suggests that in 
view of the much larger ApK, likely to arise between consecutive stages of a polybasic 
acid, a valid distinction would require rather less than the 12 measurements employed 
throughout the present work. The absence of a significant difference between the 
mean values of p1 for blocks b and dprobably arose from a loss of degrees of freedom 
which resulted from the unusually large variance associated with block d. p1 for 
succinic acid, whose titration curve exhibits no noticeable inflexion at the first 
equivalence point, is distinguishable from p1 for a monobasic acid on the basis of 
only one titration. For the same acid, p3 is too small for precise determination by 
the equipment and technique of the present work. Oxalic and malonic acids on the 
other hand exhibit P, coefficients large enough for precise determination. 

To obtain some indication of the potentialities of orthogonal function coefficients 
in quality control, a sample of propionic acid was separated into five portions by 
fractional freezing. The first and fifth fractions gave significantly different (t  = 3.09) 
mean values of p1 in an experimental design from which trends in experimental 
conditions were virtually eliminated. Moreover, as p1 for a mixture of two acids of 
similar pKa should be greater than that for either acid alone, the means show the 
anticipated relationship, p1 for the first, presumably less pure, fraction being larger 
than that for the fifth fraction. 
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